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J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Wave tails in Born-Infeld electrodynamics? 

D. S. CHELLONE 
Department of Mathematics, King’s College, Strand, London WC2, England 
illS. received 20th July 1970 

Abstract. Approximate iterative solutions to the Born-Infeld nonlinear 
electromagnetic equations are developed in flat space-time. Incoming radiation 
terms, or wave tails, are shown to arise from the iterative correction of initially 
purely outgoing approximate solutions. 

1. Introduction 
In  a recent paper, Couch et al. (1968), using the Newman-Penrose spin-coefficient 

formalism (Newman and Penrose 1962), found an approximate form for the ‘tail’ to 
a sandwich wave of gravitational radiation exploding from a perturbed Schwarzschild 
source. Part of the tail consisted of an imploding wave, focused on the source, and 
arising from the mass-radiation interaction. This incoming wave was interpreted as a 
backscattering, or reflection, of the emitted wave by the curvature of space-time, which 
may be regarded as a consequence of the nonlinearity of the Einstein field equations. 

In  the present paper it is shown that a scattered imploding wave may be attributed 
entirely to nonlinearity, by the demonstration that it occurs in approximate solutions 
to the nonlinear Born-Infeld electromagnetic equations (Born and Infeld 1934, 
Rzewuski 1967) in flat space-time. Solutions corresponding to the monopole, dipole 
and quadrupole solutions of Maxwell’s equations are constructed and the dipole and 
quadrupole solutions are found to possess incoming tails. The origin of these incom- 
ing waves is ascribed to the radiation x radiation x radiation interaction. This form 
of interaction also gives an incoming tail in the gravitational case (Couch et al. 1968). 

The relevant aspects of the Born-Infeld theory are summarized in 4 2 and the 
Newman-Penrose formalism reviewed in $3 .  In  4 4 the Born-Infeld field equations 
are translated into the spin-coefficient formalism and in $ 4 5  and 6 iteration proce- 
dures are developed for their solution. Some conclusions are presented in 5 7 .  

2. Born-Infeld electrodynamics 
This theory was proposed by Born and Infeld in 1934 in an attempt to mitigate 

difficulties in Maxwell’s theory. However, interest in the theory has been limited by 
its nonlinearity, which makes solution of the field equations difficult, and quantization 
impossible, with present procedures. 

-4s in Maxwell’s theory, the electromagnetic field is described by a 4-potential A,  
and the Lagrangian is a function of the field quantities F,, only, where$ 

F U Y  = AV# --AUS. (2.1) 
Gauge invariance is thus retained. In  order to ensure relativistic invariance, the 

t This research has been sponsored in part by the Aerospace Research Laboratories through 
the European Office of Aerospace Research, OAR, United States Air Force, under Contract 

A comma denotes partial derivative-a semi-colon, covariant derivative. We work in 
F61052-69-C-0012. 

flat space-time only. 
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Lagrangian may involve F,, through the two invariants F and G only, where 

F = &b-2F,yFfiv 
G = 3@-2F FUV* = @-2EUYPbF F 

/1V UY ou*  

Here b is a constant with the dimensions of field strength and E~~~~ is the alternating 
pseudo-tensor. Of the Lagrangians which satisfy these invariance requirements and 
which reduce to the free field (Maxwell) Lagrangian 

L = ~ F u V F U v  (2.4) 
for fields weak compared with b, Born and Infeld chose 

(1 - (1 + F - G2)1’2}b2 
en L =  

I n  the following, however, a Lagrangian of the form 

(1 - (1 + F)1/2}bZ 
L =  

will, for the sake of simplicity, be assumed. Here the term proportional to b-4  has 
been omitted. The field equations resulting from the variation of (2.6) are 

pb,v(l +F)-3’2 .  (2.7) FIIVsY( 1 + F )  - l i 2  = +b - 2FILVFPOF 

It is possible to write these in a form reminiscent of Maxwell’s equations by introduc- 
ing the tensor P,, = - FP,,(l + F)-Ij2.  The  field equations can then be expressed 
l‘uv,v = 0. This device has been used extensively in the literature (e.g. Gilbert 1964, 
Cornish 1962, Dirac 1960) but will not be adopted here. The  only exact solution to 
(2.7) that appears to have been found is static and spherically symmetric; it is given 
in $4.  

The form of the field equations used here is 

F””,, = ~b-2FuvFpu”Fpu,v(1 + F)-’.  (2.8) 
Thus it is assumed that 1 + F P 0, which is justified except, perhaps, at very short 
distances from the source (see Born and Infeld 1934). Now (2.1) implies that 

then after rearranging (2.8) the field equations may be concisely expressed : 

3. The Newman-Penrose formalism 

where 1” and nu are real, and mu, fi’ complex, subject to 
In  Minkowski space a tetrad of null basis vectors P, nu, mu and fi’ is introduced, 

I%, = 1, m’Giu = -1. 

All other contractions of two tetrad vectors give zero. The  six real components of the 
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electromagnetic field tensor F,, are replaced by the three complex quantities 

Q, = Fuvlflmy 
= +F,,( luny + E'mv) 

I$2 = Fu,Eunv. (3.1) 
The  following operators are defined 

and the following 12 spin coefficients: 

K = II1;,mfilv h = -nu,,@iu?Ev' /3 = +( lII;vnumv - mII@i+nv) 
7 = -nn,;,,?EuIv x = +(lU#%iv - mu;v@%iv) v = - n,,,?E+zV 
E = +(l , ; ,nf i lv-mu;i~~~ly)  cr = Iu;,mumY y = +( lu;vnunv - mu;v@unv) 

p = Iu;,mu?Ev il;v r = lII;Lmunv. (3.3) 

ds2 = du2+2du dr-r2(dP+sinz 6 d+2). (3.4) 

p = - n  @umV 

The Minkowski metric in null polar coordinates is 

where the coordinates are (xo, xl, 2, x3) = (U, r, 8, c$), U = t - r .  The tetrad is 
adapted to the null coordinate system by choosing l' as the outward null vector tangent 
to the null cone, nu is the inward null vector pointing towards the world line of the 
origin, and mfi and @fi  are vectors tangent to the 2-sphere defined by constant r and U .  

With this assignment 

(3.5) 
, U  u u  -112 -1 U 1 = 6, n = S,-gS: mu = 2 Y {S,+i(si118)-~6:) 

and the nonzero spin coefficients become 

where s is the spin weight, defined as follows. q has spin weight s if a transformation 
mu --f mu' = e i~mf l  induces the transformation 9 + 7' = eis*T. From (3.1) the spin 
weights of I$o, $1, $2 are 1, 0, - 1 respectively. Spin weighted spherical harmonics 
sY2m are defined by 

O < S < l  

S Y l m  = ( -  l)"s(l)a-sY,, - l < s Q O  ( 3 4  r(l)asy" i s /  > I 
where ,YIm = Y I ,  are ordinary spherical harmonics and 

K,( 1) = {( 1-k A')!/( 1- S)!)1'2# 
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It follows from (3.8) that 

ask;, = ((I-s)(Z+s+ 1 ) y  s+lYlm 
- 
asYlm = -{(Z+s)(Z-s+ 1))1!2 s-lYlm (3.9) and 

as,Y,, = -(Z+s)(Z-s+ 1) ,Yl,. (3.10) 

4. Born-Infeld equations in Newman-Penrose form 
Using the formalism of the preceding section, the Born-Infeld fieId equations 

corresponding to (2.10) may be written as four equations in 4's and spin coefficients. 
As with (2.10) Maxwell's equations can be recovered in the limit b-I -+ 0. The  Born- 
Infeld equations become : 

a a 
- - FU C O  +3 - ar $0 +*y-l$o - 2-112r-y1 = -*b -"(B2S - $op- - &)2 - l i2y - '8)  

where 
R = $290 + B 2 B O  - $12 - $12 

aR 2R 
224 at. 

p = --+I 2 -  
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9 = (i/sin 0)( 2/34) ,  and the 9 operator is used instead of a, 5 where it 

A static, spherically symmetric solution, first given by Born and Infeld (1934) is, 
proves convenient in later work. 

in a Cartesian coordinate system: 

$”O = - e&-1(y0*+y4)-1,2 F f k  = 0 i, = 1,2,3 
where 

yo2 = e / b  r2  = (XI)>” + (xz)>” + (x3)>’ e = a real constant. 

In  null polar coordinates the only nonzero components of F,, are 

Flo = -FOl = 

and in the Newman-Penrose formalism the solution becomes 

+o = b2 = 0 $1 = $ e ( ~ ~ * + r ~ ) - ~  

(4.5) 

(4.6) 

(4.7)’ 

as may be verified by direct substitution in equations (4.1)-(4.4). 
It is also possible to obtain exact solutions, independent of b, which satisfy both 

equations (4.1)-(4.4) and the source-free Maxwell equations: that is, both sides of 
equations (4.1)-(4.4) are identically zero. Examples of such solutions are : 

where Q is a real constant. I t  is not obvious how to interpret these solutions, but on 
the basis of Maxwell’s theory (4.8) represents a magnetic monopole and (4.9) 
combinations of magnetic and electric monopoles. Apparently for these cases the two 
theories have the same solutions. 

5. An iterative method 

such that at the nth stage in the iteration the solution is d A  where 
A successive approximation technique is now developed to solve the field equations 

n 

$ A  = $ A  +fA A = 0, 1, 2, 12 = 1, 2, a . .  e 

n n - 1  n 

Heref, is the ‘correction’ to the (n - 1)th iterate. The  method of solution at each stage 
in the iteration, used in this section, is applicable only when the initial iterate depends 
on Y alone; for initial iterates of U, Y, &dependence a different method must be used 
(see 5 6). 

The  initial iterate (12 = 0) is taken to be the monopole solution of Maxwell’s 
equations 

n 

$, = $2 = 0 $1 = a, = (complex) constant. 
0 0  0 

This is substituted in the right-hand sides of equations (4.1)-(4.4) and the resulting 
equations solved for equal to the first iterate $A.  The process is repeated by 

l. 

substituting 4A in the right-hand sides and solving for +A, and so on. The  method of 
solution used at each stage was first given in Janis and Newman (1965). The equations 

1 2 
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to solve for are (omitting the subscript 1) : 
1 

a 2 
8U ;I ,  

- - 4 1  + i -- 41 + r-’& - 2-1’2r-1a42 = b-2r -7 (a0  + do)(ao2 + ZO2) (5.1) 

a -dl +2-1/2r-1@ O f  2 ~ - ’ 4  1 -  - 2b-2r -7 (~0+d0) (a02+Z02)  
2r 

E -4 2 +  2-1’Zr-15 41+r-1y52 = 0 
2r 

(5.2) 

(5.3) 

a 2 
2u 

- - - 0 + ~ J 7 Y ~ O + g P - 1 d o - 2 - 1 ’ 2 r - l a ~ l  = 0 .  (5.4) 

Multiplying (5.2) by r2 and integrating yields 

d1 = --Y-’ f2-1,2r&$0 d r - ~ b - 2 r - 6 ( a 0 + d o ) ( a o 2 + - d o 2 ) + r - 2 ~ 1 0 ,  

Assuming an expansion of the form 

do = 2 (don-l(u, 8, 4>ij,nT2) 
n>l 

+1 becomes 

$$ 1 -  - r - 2 +  l o+  2-125 - & b - 2 ~ - 6 ( a o  + Zo)(ao2 +‘Zo2). (5.5) 

Multiplying equation (5.3) by Y and integrating, 

d2 = 2-li2y-2&410+i32 c + &JOY - 1. 
n P 1  n(n+ 1) rn t2  

Substituting ( 5 . 5 )  in (5.4) and equating coefficients of Y - ~  and r - n - 3  results in 

a 
d O O  = - 2-1.’2a+,o (4,O = -& 4.0) (5.7) 

(bo% = -*(n+ l ) ~ o ~ - ~ - ~ n - ~ a ~ ~ o ~ - ~ .  (5.8) 

(b10; = - 2 -1’2a$b20. (5.9) 

Substituting (5.3) and (5.6) in (5.1) and equating coefficients of r - 2  yields 

Equations (5.7), (5.8) and (5.9) are exactly the same as those that occur in the solution 
of the source-free Maxwell equations (Janis and Newman 1965), so with the help of 
results obtained by them, and with the choice d20 = 0, one finds that doo and c$lo are 
independent of U. T o  ensure that the first iterate ‘contains’ the 0th iterate, dlo and 
doo are chosen to be a. and 0 respectively. The  first iterate is now 

I L I 

where x1 = - $b-2(ao + do)(ao2 + do2). Repeating this procedure twice gives 

+o = +2 = 0 +1 = a , r - 2 + ~ 1 ~ ~ - 6 + / 9 ~ ~ - 1 0 + Y ~ r - 1 4 + 0 ( ~ - 1 8 )  
3 3  3 
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where 
p, = - ~ ~ b - 2 ~ ( a o + n o ) 2 - ~ ( a o 2 +  n o 2 ) )  

y3 = -2aonop2b-2- "12(ao+n,)b-2. 

It is apparent that a1 depends on b - 2 ,  p2 on b-4 and y3  on bw6 ,  so each successive 
iterate contains terms of higher order y - l  and b- l  dependence. In  this sense each 
iterate is 'correct' to the appropriate powers of y - l  and b- l .  

If a, is put equal to e/2, e real, in + A ,  this solution turns out to be equal to the 
power series expansion of the exact solution (4.7), to the accuracy of +A, so for 
a, = e/2 it seems likely that the iterative technique used here converges to a known 
solution, 

3 

3 

6. The Born-Infeld tail 
For solutions with U, Y and 6' dependence the equations for each iterate are solved 

by a method of Torrence and Janis (1967). The  successive iteration scheme is as 
outlined in 4 5 except that, for technical reasons, + A  does not contain + A ,  However as 

the equations for + A  are linear and is a solution of the left-hand sides of these 

equations equated to zero, + A  can be added to +A, n = 1,2,3, ... to give the complete 
solution at each stage. 

6.1. Dipole type solution 

(Janis and Kewman 1965) 

n 0 

n 0 

0 n 

The (axisymmetric) Maxwell dipole solution is taken as initial iterate. This is 

+o = al(u)sinO/r3 
0 

d2 = -Ul sin O / Y  -al sin 6lP- a, sin O / Y ~ .  

As in 5 5 these values for d A  are substituted in the right-hand sides of equations (4.2) 
and (4.3) and on multiplying by y 2  and Y respectively and integrating yield 

0 

0 

(6.3) 

where ck and d k  are functions of a,, 6, and their U derivatives to the third, and of 6'. 
They are given explicitly in Appendix 1. T o  simplify the equations the constants of 
r integration, $lo and +20 are set equal to 0. By substituting (6.1) in the right-hand 
sides of (4.1), (4.4) one obtains 
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where e,, f k  are given in Appendix 1. Substitution of (6.2) in (6.4) and (6.3) in (6.5) 
yields 

We may regard ck,  dk, e ,  and fk as having spin weight 0, - 1, 1 and 0 respectively 
when they occur in an equation containing + A .  Accordingly the last terms of (6.6) 
and (6.7) can be written in the form 

2-1'26dk+fk 2 t k , , ( U )  oY,o k = 1, ..., 5 (6.9) 
1=1 

(see Appendix 2). Following Torrence and Janis (1967) and Couch et al. (1968), +o is 
taken to be of the form 

(6.10) 

The  problem now reduces to finding the form of xo. Using ( 6 4 ,  (6.10), (3.10), (6.6) 
becomes 

Now, if the operator acting on go, is L, 

Lgo, E Y l  - ID'+ 1 i o y - Z )  - +lv' -2DE yxor - 1 )  - ir' - 1DZf - 'Dxo - f l -  I -  1lx0) ( 

+ ~ P - ~ ( Z +  l)Z ( r z D ' + l ( x o ~ - l )  dr. (6.12) 

There is an identity given in Torrence and Janis (1967) 

D { P ~ * ~ D ~ ( F Y - ~ ) )  = y1Dl+lF for all integers E 2 0 (6.13) 

and arbitrary F. Using (6.13) in the second and fourth terms of (6.12) and assuming 
that Y ~ + ~ D ~ ( X ~ Y - ~ - ~ ) ~ ~  = 0: 

Lgol = Y , - W + l ( r - 1 ( i o  -+Oxo)). 

Equation (6.11) now becomes 

where all constants of r integration have been put equal to zero. The independent 
variables are now transformed according to : 

( U ,  P) + ( U ,  v )  z' = u + 2 r .  
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Under this transformation 2j2u - &a/i?r becomes and 

where Ho is a constant of U integration. So from (6.10) 

$o = 2 ,Y1,rl-lD"+l ( x or-') 
1 

(6.15) 

with xo given by (6.14). The  equation for $1, (6.7), is treated similarly, assuming 
rrD1-1(xlr-l-2)lm = 0, and 

$, = 2 oYlo Y ~ - ~ D ' ( X ~ ~ - ~ - '  ) (6.16) 
1 

where 
2 k - 1 + 3 t  k , l (U ' ) (Z '  - U ' ) '  - k -  ,(k + 3)!) 

du'+H,(v). (6.17) 
- x  k (k + I+ 3)! 

H,(o) is a constant of U integration. $2 is obtained from equation (6.3), and, using 
(6.16) and (6.13), 

(6.18) 

The complete solution for the first iterate is obtained when $.4 is added to the results 
just obtained, so referring to dppendix 2, 0 

(6.19) 

+ b - 2  di, 
k=l 

y k + 4  

where d = -22/2u+ ajar and the constants Ho and H ,  representing arbitrary 
incoming radiation have been put equal to zero. xo,l means xo for 2 = 1. 

sk,,, tk , ,  and tk , ,  are 
arranged, by choice of a,, to be equal to the Dirac delta function or its derivative. 
In  this case the x ,  and x1 terms reduce to functions of z' = u+2r only if U > 0 and 
zero if U < 0. Now comparing with the retarded and advanced 21 pole Maxwell 
fields, which are respectively given by 

An interpretation of these results can be obtained if 

$ A  = nAd2-l+A(a y A - 2 - 2  I 1 
1( 1 - l - A Y I O  

$ A  = m,D'+l- A { b , ( ~  + Z ~ ) r - ~ - ~ } r l - ~  1- A Ylo 

where nA and mA are numerical factors. The  'correction' terms to the (outgoing) 0th 
iterate represent incoming radiation, apart from the last term in $2 which is additional 
outgoing radiation. 

The  problem now is to choose the form of a,. It cannot be put equal to 6(u) 
directly, as the s ~ , ~  and t k , l  terms involve products of the a, and their derivatives. 
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Instead a, is put equal to e/(u2 +e2) where E is a positive constant, and if, after evaluat- 
ing s k , l  and t k , l ,  E is made to approach zero, then s k , l  and t k , l  approximate to S(u) or 

6.2. Quadrupole type solution 
The procedure given in $6.1 can be used with the Maxwell quadrupole solution 

as initial iterate, and results of the same kind are obtained. The  detailed calculations, 
which are not given here, are, of course, more complicated than those for the dipole 
case, 

a{s(u))/ Eu. 

7. Conclusions 
Tails or backscattered radiation occur in approximate solutions of the Born- 

Infeld field equations obtained by iteration from the Maxwell dipole and quadrupole 
solutions. There is no radiation in solutions obtained from the Maxwell monopole 
solution. The  form of the first iterates in the dipole and quadrupole type solutions is: 

(i) The  initial or 0th iterate in the form of a delta function pulse of radiation out- 
going from the source. (The first terms of (6.19).) 

(ii) A tail, or backscattered radiation, focused on the source and emanating from 
(i). (The second and third terms of (6.19)) 

(iii) Additional outgoing radiation coincident with (i). (The last term in (52 in 
(6.19).) 

The  radiation described by (ii) and (iii) is of order b b 2 .  Subsequent iterates may 
be expected to be of higher order b-l  dependence. The  results are shown in pictorial 
form by a Penrose picture (figure 1, Penrose 1964). 

I+  

Figure 1. 3 +, 3 - denote future and past null infinity, I + , I - future and past 
temporal infinity and Io spatial infinity. The line joining I + and I - represents 
the world line of a source which emits a delta function pulse of radiation at P. 
The  backscattered radiation emanates from this pulse and is focused on the 

source. 
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Appendix 1 

c g  = 0 

C, = - d 2 ( d 1  + 6,) COS 8{(d12 + d 1 2 )  cos2 8 +&(ulUl + d1C?,) sin2 8) 

c2 = - 1/2(d, + d,)(a,d, + d,d,) cos 8 (2 cos2 8 + Q sin2 8) - Q2/2(a1 + iil)(d12 + i12) 

c3 = - Y/2((i1 + h,)(u12 + z12) cos @(cos2 8+$ sin2 8) - ;1/2(a, + 6,)(a1dl + d,d,)  

c4 = - 42(a,  i d,)(a12 +d12) cod($  cos2 8 +& sin2 8) 

d, = 2, sin 8((d12 + d 1 2 )  cos2 8 +&(a,&, + d,B,) sin2 e} 
d2 = &,(a1dl + d,d , )  sin 8(2 cos2 8 + +  sin2 8) +$(dl + d,)(d12 + Z12) cos2 B sin 8 

x cos 8(4 cos2 8+  sin2 8) -&42(a,+ Gl)(ulul + d,C?,) sin2 8 cos 8 

x cos 8(5 cos2 8+  2 sin2 8) 

+ *(al&, i d,C?,) sin 8{2dl2 sin2 8 - (6, -Ul) cos2 e} 
+g(d,iil+ i,C?,)sin8(-2dl cos2 e-&?, sin2B)-&G, ~ i n 3 8 ( a ; i i ~ + ~ ~ Z , )  

d3 = &,(a12 + d12) sin 8(cos2 8 +a sin2 8) + &(a,d, + d,d,) sin 8 

x ((36, + 7Ul) cos2 8 +Qd, sin2 e} - ;5,(d12 + h12) sin B(cos2 8 +$ sin2 8) 

++(alii, + a,&) sin 8{(a,- 36,) cos2 8 + ( a ,  -85,) sin2 e )  
d4 = + d12) sin 8((3u,  + d l )  cos2 8 +d ,  sin28} ++(a,ci, + d,d,) sin 8 

x {(a,  - 25,) cos2 8 + +(5al - 75,) sin2 e> 
d - - 138(a12 + d12)(a,  - 2,) sin 8(cos2 8 ++ sin2 8) 
e, = 28, sin 8(2(Ul2 + h12) cos2 8 + (al&, + d,B1) sin2 8) 

e2  = 581(a,d,+ 6,d,)  sin 8(2 cos2 8 ++ sin2 8) + 4d1((il2 + d12)  sin 8 cos2 8 

- $al(alu; + G,&) sin3 8 + Z(a,ii, + ~ ~ 8 , )  sin 8{(2d ,  - d,) cos2 8 + d ,  sin2 6)  

- a,(ci,U', + d,i,) sin 8(2 cos2 8 + $ sin2 e )  
e3 = 3d,(a12 + d12) sin 8(2 cos2 8 tQ sin2 8) + (aldl + d,d,) sin 8 

x (2(2i1 + 3d1) cos2 8 + Ed, sin2 8} - (d12  + d 1 2 )  sin 8(25, cos2 8 +&a, sin2 8) 

+ (a,&, + d,&) sin 8(2(Zl - 2a,) cos2 8 + (d, - #al )  sin2 8) 

e4 = 3(a12 +G12) sin B{(d, i d , )  cos2 8+@, sin2 e} 
- (a,d, + d,d,)  sin 8{(a, + 6,) cos2 8 - a(%, - 7a,) sin2 81 

es = $(a12 + G12)(dl -a,) sin3 8 

f, = - y'2(d1 + 2,)(d1Ul + h,a',) cos 8(2 cos2 8+  4 sin2 e) -$d2(i1 + d1)(ulii; + n,z) 
x sin2 8 COS 8 + d2(u, + a,) sin2 8 COS 8{+(a,iil + qi,) - (6,2 + 6,")) 

f 2  = - 1/2(d1 + hl)(d12 +d12)  cos 8(4 cos2 8 + # sin2 8) - 2 / 2 ( d ,  + z1)(al&, + did,) 
x (2 cos2 8 + sin2 8) - d2(a1 + dl)(ulul + d,C?,) cos 8(2 cos2 8 +& sin2 8) 
-+2/2 sin2 e COS e((., +iil)(a;ul + zlZl) + 3(&,+ d,)(a,U, + nldl)) 
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f 3  = - 1/2(d,  + d,)(a,u, + d,d,) cos 8(7 cos2 8 + sin2 8) - 1/2(a,  + d,)(d12 + d 1 2 )  
x cos 8(4 cos2 8 + sin2 0) - 1/2(a, + dl)(czlil + d , d , )  cos 8(2 cos2 8 + f sin2 8) 

- 1/2 cos 8 sin2 O((a, + d,)(d12 + d 1 2 )  + i ( U ,  + iz',)(a12 + d l z ) }  

f4 = -31/2(6,+ d 1 )(a1, +cl2) cos (?(cos2 e+* sin2 8) 

- 1/2(cz, + d,)(a,d, + t i ,d,)(7 cos2 8 + + sin2 0) 

f5 = - 31/2(a, + d,)(a12 + d12)  cos 8(cos2 8 + 8 sin2 8). 

Appendix 2 
Equation (6.8) is 

2 - 1 ' 2 a ~ ~ - ~ + e ,  = 2 sk,l ,Yl0 k = 1, ..., 5 .  
1 

Equation (6.9) is 
2-l '2adk+ f k  = 2 tk,l ,Y,, k = 1, ..., 5. 

(i) To just i fv (6.8) C k - 1  can be expressed: 

c k - 1  = A,(u) cos 8+A2(u) cos3 0 

a c k - 1  = B,(u) sinB+ B,(u) sin3 0 

ek = A3(u) sin 8 + & ( U )  sin3 8 

, Y,, = (&)lr2 sin 8 
, Y20 = $(-&)1!2 COS 0 sin 8 
, Y30 = $(&)1/2 ( 4  sin 0 - 5 sin3 8) 

some A,, A,. 

some B,, B2. 

some A,, A,. 

s o  
.2lso 

Now, using (3.8), 

2 sk,! , Y,, = s,,~ sin 8 + cos 8 sin 8 +Sk,3(4 sin B - 5 sin3 8) + . . . , 
1 

Choosing s k , l ,  S k c , 3  nonzero and all other S k , l  = 0 this can be expressed: 

2 s k ,  , Ylo = sin 8 ( s k , l +  4sk,3) + sin3 8( - 5sk,3).  
1 

So by choosing s k , l  appropriately, equation (6.8) can be satisfied. 
(ii) Tojustify (6.9) 

dk = A5(u) sin 8 + A6(u) sin3 6' 
ad, = B3(u) cos 8 + B,(u) cos3 8 

some As,  A6 

some B,, B4 

NOW 
f k  = A7(u) cos O+A,(u) cos3 8 some A,, A,. 
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